Карта сайта
Главная Электроснабжение Расчёт энергоотдачи солнечной электростанции
Солнечные батареи
4
3
2
1

Расчёт энергоотдачи солнечной электростанции

Расчёт средней ежедневной выработки электроэнергии необходим для наиболее правильного подбора солнечной электростанции. Существует статистика поступления солнечной энергии на единицу поверхности Земли для каждого района наблюдения. Наблюдение за уровнем облачности и солнечной активности осуществляется с помощью метеорологических спутников. В автоматических расчётах на сайте компании «Солнечная Энергоимперия» применяется статистика NASA – американского национального управления по воздухоплаванию, аэронавтике и исследованию космического пространства. Статистика получена в результате десятков лет наблюдений из космоса и является усреднённой. Поэтому, в отдельно взятый год наблюдения, среднегодовое и среднемесячное поступление энергии может несколько отличаться от представленных данных.

На основании данных о среднемесячном поступлении солнечной энергии на квадратный метр земной поверхности можно произвести расчёт ожидаемой выработки электроэнергии солнечными фотоэлектрическими (ФЭ) модулями, установленными в различных районах Земли. Количество поступающей солнечной энергии указывается в киловатт-часах на квадратный метр в день (кВт•ч/м2/день).

Данные для г. Москвы по поступлению солнечной энергии на поверхность, расположенную под углом 41° к горизонту («летний» угол установки ФЭ модулей) и направленную строго на Юг, кВт•ч/м2/день:

1.512.553.784.345.124.975.004.573.222.201.471.08
ЯнварьФевральМартАпрельМайИюньИюльАвгустСентябрьОктябрьНоябрьДекабрь

Данные для г. Москвы по поступлению солнечной энергии на поверхность, расположенную под углом 71° к горизонту («зимний» угол установки ФЭ модулей) и направленную строго на Юг, кВт•ч/м2/день:

1.722.713.673.794.183.954.003.862.972.241.621.26
ЯнварьФевральМартАпрельМайИюньИюльАвгустСентябрьОктябрьНоябрьДекабрь

Исходя из этих данных, можно произвести расчёт среднемесячной ежедневной выработки электроэнергии солнечной батареей (ФЭ модулями). Например, мы располагаем четырьмя солнечными модулями номинальной мощностью 250 Ватт. В сумме, наша солнечная батарея обладает номинальной мощностью 1000 Ватт. Производитель указывает номинальную паспортную мощность модулей при уровне освещённости 1000 Вт/м2. Если за сутки, в июле, в среднем, на квадратный метр поверхности Земли поступает 5 кВт•ч энергии солнечного излучения (с самой различной мощностью в течение дня), значит, для удобства расчёта можно представить, что на поверхность поступало энергии при 1000 Вт мощности в течение 5 часов. Если помножим 1000 Вт на 5 часов, то получим 5000 Вт•ч, то есть 5 кВт•ч (5 киловатт-часов энергии).

С учётом того, что производитель проверяет ФЭ модули при освещённости 1000 Вт/м2, можно сделать вывод, что наша солнечная батарея проработает в июле с её номинальной указанной мощностью в течение 5 часов (приблизительно) и выработает 5 кВт•ч электроэнергии. При этом делается допущение, что батарея в течение всего светового дня выдаёт электрическую мощность прямо пропорционально уровню солнечного излучения. Именно по такому принципу производится расчёт средней выработки электроэнергии солнечной батареей ежедневно, в течение отдельно взятого месяца.

При расчётах не нужно учитывать КПД применённых при изготовлении солнечного модуля солнечных элементов, и высчитывать эффективность квадратного метра самой солнечной панели. КПД солнечных элементов влияет только на итоговую площадь получившегося солнечного модуля. Чем выше КПД солнечных элементов, тем меньшим по размеру получается сам солнечный модуль той же мощности. А при одинаковых размерах ФЭ модулей с разным КПД, мощность модуля с более высоким КПД окажется несколько выше, но, зачастую, не более чем на 10%.

После того, как мы выяснили, сколько электроэнергии выработает, в среднем, наша солнечная батарея, расположенная в определённом регионе при определённом угле наклона к горизонту и ориентации по сторонам света, нам необходимо посчитать, какой частью из ожидаемого количества электроэнергии мы сможем действительно воспользоваться!

При этом рассмотрим две солнечных электростанции, с установленными солнечными модулями суммарной мощностью 1000 Ватт. Допустим, что станции отличаются лишь видом применённых в них контроллеров. В первой электростанции у нас будет PWM (ШИМ) контроллер, во второй — контроллер с функцией MPPT, с указанным максимальным КПД 98%.

В обеих станциях применены одинаковые аккумуляторные батареи (АКБ) с потерями при их зарядке и разрядке порядка 20%. В качестве инвертора возьмём эффективный российский инвертор (производства СибКонтакт), работающий с максимальным КПД 92%.

Электрическая энергия от солнечных ФЭ модулей вначале поступает в контроллер заряда, который передаёт эту энергию дальше - на АКБ. Электроэнергия, таким образом, «запасается» в АКБ. Чтобы воспользоваться данной энергией, нужен инвертор, который может преобразовать постоянное напряжение от АКБ в переменное напряжение 220 Вольт — для питания электроприборов. Не станем учитывать то, что поступление энергии от солнечной батареи и питание нагрузки могут совпадать по времени (что улучшит КПД работы всей системы), чтобы произвести расчёт объективно.

Теперь рассчитаем, приблизительно, количество той энергии, которым мы сможем воспользоваться для питания электроприборов. Представим, что станция установлена в Московской области, эксплуатируется в июле, мощность солнечной батареи 1000 Ватт, угол наклона ФЭ модулей к горизонту 41°, ориентация ФЭ модулей южная. При такой установке солнечная батарея способна выработать в «средний» июльский день 5 кВт•ч электроэнергии.

Примем средний КПД работы контроллера заряда равным 90%, а средний КПД инвертора 80%. Это необходимо из-за того, что КПД работы контроллера и инвертора, в среднем, всегда будут ниже, чем указанные производителями максимальные значения КПД.

Помножим КПД зарядки и разрядки АКБ на КПД контроллера заряда и на КПД инвертора:

0,8 * 0,9 * 0,8 = 0,576. Получили расчётный коэффициент для электростанции с MPPT контроллером.

Две рассмотренные электростанции отличаются видом применённых в них контроллеров. Статистика показывает, что контроллер с функцией MPPT работает со средней эффективностью, примерно на 20% превышающей эффективность ШИМ контроллеров.

0,576 * 0,83 ≈ 0,478. Получили расчётный коэффициент для электростанции с ШИМ контроллером.

Мы получили среднюю эффективность использования электроэнергии, вырабатываемой ФЭ модулями. Теперь рассчитаем количество энергии, которое мы можем непосредственно направить на питание электроприборов. Умножим среднемесячную ежедневную выработку энергии ФЭ модулями на полученные величины:

5 кВт•ч * 0,576 = 2,88 кВт•ч. Это и есть то количество энергии, которым можно воспользоваться в Московской области, при эксплуатации электростанции в июле, с установленной мощностью солнечной батареи 1000 Ватт, при наилучшем «летнем» (41°) угле наклона и южной ориентации ФЭ модулей, при использовании MPPT контроллера заряда.

5 кВт•ч * 0,478 = 2,39 кВт•ч. Это расчётное количество энергии при тех же условиях, для такой же электростанции, но с ШИМ контроллером заряда.

Обратите внимание, что на сайтах некоторых организаций, предлагающих продажу и установку солнечных электростанций, максимальное количество энергии, которое можно использовать для питания электроприборов, просто указано в виде произведения установленной мощности ФЭ модулей на 8 часов в день. То есть, Вам обещают до 8 кВт•ч в день с каждой 1000 Вт модулей, да ещё с ранней весны до поздней осени! Данное утверждение может ввести Вас в заблуждение!

Мы же произведём наиболее честный подсчёт, для примера показав среднее количество энергии, которым Вы, теоретически, можете пользоваться ежедневно в Московском регионе в течение 12 месяцев в году — при рекомендуемом «зимнем» (71°) угле наклона и южной ориентации ФЭ модулей.

Для электростанции с ФЭ модулями мощностью 1000 Ватт и MPPT контроллером заряда получим следующие значения с учётом потерь (при расчётном коэффициенте 0,576), кВт•ч в день:

0,991,562,112,182,412,282,302,221,711,290,930,73
ЯнварьФевральМартАпрельМайИюньИюльАвгустСентябрьОктябрьНоябрьДекабрь

Для электростанции с ФЭ модулями мощностью 1000 Ватт и ШИМ контроллером заряда получим следующие значения с учётом потерь (при расчётном коэффициенте 0,478), кВт•ч в день:

0,821,301,751,812,001,891,911,851,421,070,770,60
ЯнварьФевральМартАпрельМайИюньИюльАвгустСентябрьОктябрьНоябрьДекабрь

Среднегодовое значение количества потенциально полезной энергии для питания приборов электростанцией с модулями мощностью 1000 Вт и MPPT контроллером составит 1,73 кВт•ч в день.

Среднегодовое значение количества потенциально полезной энергии для питания приборов электростанцией с модулями мощностью 1000 Вт и ШИМ контроллером составит 1,43 кВт•ч в день.

На сайте Вы можете произвести расчёт эффективности работы станций в любом регионе России.

Следует учесть, что данный расчёт не учитывает «температурный коэффициент», который влияет на мощность ФЭ модулей (температура ФЭ модулей при расчётах принята равной +25°C). В зимнее время, например, мощность ФЭ модулей может существенно возрасти из-за снижения температуры окружающего воздуха. При 0°C мощность может возрасти на 11%, при -40°C — на 30%. Оценить примерную степень увеличения мощности работы ФЭ модулей зимой Вы сможете, изучив данные по среднемесячным температурам в Вашем регионе. Температурный коэффициент при расчётах можно принять равным -0.47% на каждый градус разницы между текущей температурой и номинальной температурой (+25°C). Если разница получается «отрицательная», то процент изменения мощности будет «положительным». То есть, при повышении температуры ФЭ модулей, их мощность уменьшается. А при снижении температуры, мощность модулей увеличивается.

Из-за существенного влияния температуры ФЭ модулей на эффективность их работы, не рекомендуется устанавливать модули вплотную к плоской поверхности крыши или другой опорной плоскости. Рекомендуется оставлять вентиляционный зазор. Многие установщики пренебрегают данным правилом, в результате чего ФЭ модули сильно перегреваются под воздействием прямых солнечных лучей в жаркие летние дни. Это приводит не только к снижению мощности работы ФЭ модулей, но и к сокращению срока их службы.

Полезные материалы:

Подбор солнечной электростанции на сайте
Система автоматического подбора автономной солнечной электростанции...
Расчёт энергоотдачи электростанции на солнечных батареях
Расчёт средней ежедневной выработки электроэнергии необходим для правильного выбора солнечной станции...
Выбор инвертора для солнечной электростанции
Мощность инвертора требуется подбирать с определённым запасом...
Советы по энергосбережению
Значение среднего энергопотребления напрямую влияет на количество солнечных батарей в электростанции...
Автономное электроснабжение дома
Отличительные особенности централизовннного и автономного электроснабжения...
Особенности производства солнечных батарей
В качестве основного сырья для производства используется кварцевый песок с высоким массовым содержанием двуокиси кремния...
Солнечные элементы и фотоэффект
Попадающее на кремниевую ячейку солнечное излучение преобразуется в энергию электрического тока...
Ветрогенераторы с вертикальной осью вращения
Использование энергии ветра зачастую является эффективным способом энергоснабжения загородных домов, дач, экопоселений...
Главная Электроснабжение Расчёт энергоотдачи солнечной электростанции
Текстовые материалы, ПО и графические элементы сайта юридически защищены в соответствии с авторским правом, и являются исключительной собственностью ООО «Солнечная Энергоимперия». Копирование информации в коммерческих целях без согласования с администрацией сайта запрещено. Нарушения отслеживаются.